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 :انًهخص

طشيقح انرحهيم ت انُٕاشش ثُائيح الأتعاد ذسرخذو في انعذيذ يٍ انرطثيقاخ، يٍ ْزِ انرطثيقاخ في انًكائٍ انرٕستُيّ

اسرعًهد لإيجاد ذٕصيع ضغظ انسكٌٕ ٔانضغظ انكهي نهُاشش دٌٔ انصٕذي يع ٔجٕد انرُاظش أ ثُائيح الأتعاد في انًقطع 

انُٕاشش انري   .ًعادلاخ تطشيقح انعُاصش انًحذدج ى انحم انُٓائي نهنًضطشب انغيش يسرقش ٔذانًائع انهضج ا ذى اسرخذاو.انًسرخذو

يسرقيًح انجذساٌ نعذد يٍ انضٔايا ٔ َسة يساحح انذخٕل ٔانخشٔج  قذ ذى تحثٓا َظشيا تحيث لا , ذى اسرخذايٓا ْي ثُائيح الأتعاد

 . k-))سرخذاو ًَٕرج الاضطشاب عايم الاضطشاب عشف تا.يركٌٕ نذيُا يُاطق اَفصال انجشياٌ

Abstract 

Tow–dimensional diffusers are used for a variety of applications, such as turbo machines. 

An analytical procedure for computing the static and total pressure distribution subsonic diffuser 

with axi-symmetric or two dimensional cross-sections used .Finite element procedures for 

incompressible viscous fluid motion, turbulent, unsteady flow are used in this paper. The unsteady 

flow problem is solved by the Newton-Raphson method. Straight–walled, two-dimensional 

diffusers for several aspect ratio and angles were investigated theoretically for the purpose of 

studying the regime of no appreciable stall. Introducing the (k-) model to the work also used the 

effect of turbulence. 
 

1. Introduction: - 

The deceleration of flowing fluid, or diffusion as it is widely known, is a process of 

primary importance whereby some of the kinetic energy of the flowing fluid is converted into static 

pressure rise. Hence, fluid motion take places against an adverse pressure gradient, and unless great 

care is taken in the design of diffusing system.  From the point of view of the fundamental of fluid 

motion, the study of diffusing flows is indeed very interesting. Therefore, it has attracted the 

attention of many investigators, and a great deal has been published on performance of various 

diffuser configurations, e.g., conical, annular, rectangular, radial. 

There is a wealth of literature on flow through the diffuser. Many researchers presented 

design and analysis of the diffuser, both experimental and analytical solution. Riyadh [1], presented 

the mathematical model for the two-dimensional diffuser in centrifugal compressor. The flows 

described in this research steady state, and turbulent flow. K. Eisele, A. Öngören,, P. Holbein and  

M.V. Casey [2], described the dedicated test rig for planar diffuser flows of different opening angles 

is available and has been modified to take the flow conditions such as inlet blockage and inlet 

turbulence level of a typical turbo-machinery diffuser into account. The flow in this diffuser was 

analyzed with LDA at different opening angles in the range of attached and stalled flow regimes. 
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The measurements show that a three-dimensional separation of the flow sets-in a corner at moderate 

opening angles and grows with increasing diffuser angles to a big separation zone downstream.  Kai 

U. Ziegler1, Heinz E. Gallus and Reinhard Niehuis [3], presented the interaction between impeller 

and diffuser is considered to have strong influence on the flow in highly loaded centrifugal 

compressors. However, the knowledge about this influence is still not satisfying. This two-part 

paper presents an experimental investigation of the effect of impeller-diffuser interaction on the 

unsteady and the time averaged flow configuration in impeller and diffuser and the performance of 

these components. The flat wedge vaned diffuser of the investigated stage allows an independent 

adjustment of diffuser vane angle and radial gap between impeller exit and diffuser vane inlet. 

Attention is mainly directed to the radial gap, as it determines the intensity of the impeller-diffuser 

interaction 

The diffusing passage two dimensional diffusers considered here is show in Fig. (1). 

Geometry is fixed by aspect ratio, [b/W1], and any two of the for dimensionless geometric 

parameters, (2, L/W1). The computational procedure taken solves the time average Naviar-Stokes 

equation for unsteady state, incompressible and turbulent flow in two-dimensional situations. 

Analysis of the flow inside the diffuser was based on finite element technique, by using Galerkin 

method. 

Fig. (1) Two-dimensional diffuser for centrifugal compressor. 
 

2. Design and parameter of diffuser:- 

The simple two dimensional diffuser may be described by three geometric parameters, the 

area ratio (AR), the divergence angle of one way (), and the ratio of the wall length to entry width 

(L/W). The parameters are illustrated in Fig. )1). But only two of the three will be independent since 

they are related by Ref. [4] as: 

)1(....
W

L
2-1R    SinA 

 

It has been common practice to plot of diffuser characteristics against (2) and (L/W). An 

alternate method would be to use (AR-1) and (L/W). Several combinations have been used in this 
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paper, since each has its own advantages. 

The geometric of simple vaned island type diffuser system consists of a number of channels, 

as shown in Fig. (2). The channel can be divided into three regions, the flow region (1) is unsteady 

and very unsettled because of jet and wakes emanating from rotating impeller passage and these 

tend to mix as the flow advances towards the diffuser throat. Region (2) clearly conforms to parallel 

wall rectangular diffuser. In region (3), as in region (1), the flow is bounded by the diffuser blade 

only on one side. Hence, the mechanism of diffusion would not be the same as in the region (2), as 

described by Ref. [5]. 

Because the distance from the wall is very important, therefore takes path (1), and it's at 

(0.02m) distance from the wall. In this paper, it is intended to design region (2) only, in designing 

the diffuser, several models under line (A-A) of Fig. (3) Were taken, as illustrated by [5, 6 and 7]. 

Fig. (2) Wedge type vane Island diffusers          Fig. (3)Flow Regimes for two-dimension 

diffuser. 

3. Variation Equations 
 

The basic conservation equations are the continuity and motion which for unsteady state, 

take the following time averaged form in two-dimensional case [8 and 9]. 

 

•Continuity  

  0, jiu                                                                                                ...(2) 

 

•motion 
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( ijd ) into equation (3) and using equation (2). 
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               ... (4) 

•Two equation turbulence modeling 

In this paper the turbulent effects are included via a k- model, which is based on the 

transport of two additional turbulent quantities, the turbulent kinetic energy (k) and its dissipation 

rate () for high Reynolds number, with two dimensional unsteady flow. These two additional 

balance equations may be written in the following form, [8 and 10] as: - 
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Where 

eff=l+T   and   T=Ck
2
/ 

          

At high Reynolds numbers,  may be assumed proportional to (k
3/2

/ℓ) Here, σk, C1, σε,  C2 

and Cµ are the turbulence model constants, which are respectively equal to 1.0, 1.44, 1.3, 1.92 and 

0.09 respectively. 

 

• Pressure Recovery Coefficient: - 

This is the most widely used parameter and it gives static pressure rise as a function of the 

inlet velocity head, i.e.; 

2
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4. Finite Element Analysis 
 

To apply the finite element method, variation equation corresponding to equation (2) and (3 

are required. They can be obtained by employing the conventional procedure called Galerkin 

method. Let 

iu be the weighting function. Multiplying both side of equation (3) by 


iu , 

integrating over the whole volume V and using Greens theorem , the following is obtained, [9, 11 

and 12]. 
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Introducing equations ( ij ) and ( ijd ) and rearranging them, the final form of the variation 

equation is derived. 
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As to the equation of continuity, after multiplying both sides of equation (2), by weighting 
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function and integrating over the whole volume V, the variation equation is expressed in the 

following: 

 

v
dVjiuP 0),(              … (10) 

   Assume that the flow field to be analysis is divided into small regions called finite 

elements, let the interpolating equation for velocity and pressure in each finite element be expressed 

by the following form, [12]: 

iuiu                … (11) 


PP                … (12) 

Where   and   denote interpolation function or shape function for velocity and pressure 

respectively. ( iu ) means the velocity at th nodes of each finite element in the ith direction, and 

( P ) is the pressure at the th node. Using the finite element mesh, the flow inside diffuser has been 

studies.  

 

The boundary conditions are given as follows Fig. (2). 

u=0 and v=0               for all nodes at (AB and CD).       … (13) 

u=100 and  v=0    for all nodes at AC.         … (14) 

P=0     for all nodes at BD.                   …  (15)  

For weighting function *
iu , and *

iP , the relation that is similar to equations (11) and (12) are 

used as follows. 
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      Introducing equations (11), (12), (16) and (17) into equations (9) and (10), the following 

finite element equations can be obtained for motion and continuity as: 
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And superposed dot denotes partial differentiation with respect to time (t). The conventional 

finite element superposition procedure gives the final equation system for the whole flow field in 

the following form. 

0
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0vH               … (21) 

where: - 
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 v and q denote the velocity and pressure of the whole nodes in the flow field. 

By the same method solve the Kinetic energy equation and dissipation equation for the two 

dimensional flow equations (5 and 6) 

The type of the element in the mesh is triangular with (144) element and three nodes for each 
element Fig.(4). 

  

 
Fig.(4) Natural coordinate triangular element. 

 

5. Computer Program: -     

 A general purpose computer program Finite element mechanics is to producing the results to 

be discussed. The program is written and developed in Quick Basic language to solve the two 

dimensional unsteady flow Ref. [11]. The perturbation method is employed to solve the unsteady 

flow problem by equations (20 and 21). Assume that the term  can be expanded into Taylor 

series in small perturbation parameter (£) as follows. 

 

22£1£0
              …  (22) 

 

Expanding velocity v and pressure q as: 
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22£1£0


qqqq               …  (24) 

Introducing equations (22, 23 and 24) into equations (20 and 21) and equating the 

coefficients of the same order terms in (£) lead to the following simultaneous equation system : 
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For the nth order 

0 nvSnqHnvnvK
n

vM


         … (25) 

0nvH 
              … (26) 

 

Replace the differential with respect to time t by the difference with respect to the short time 

increment t as: 

t

nvnvn
v




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)0(



                … (27) 

 

Where )0(nv


 denotes the initial value of the velocity increment for short time increment t. 

Introducing (27) in (26) get the matrix and solve this matrix by Newton-Raphson method to get on 

velocity component and pressure at all nodes. 

6. Results and Discussion 

Several models were taken for different angles (), area ratios (AR) and the ratio 

length/width (L/W 1 ), the models taken are in table below: 

Model 

No. 

1 

AR 

3 

L1/W1 L2/W1 L3/W1 L4/W1 1 2 3 4 

1 1.4 3 4 5 6 7.63o 5.73o 4.58o 3.82o 

2 1.6 3 4 5 6 11.42o 8.58o 6.87o 5.73o 

3 1.8 3 4 5 6 15.2o 11.42o 9.15o 7.63o 

4 2 3 4 5 6 18.9o 14.25o 11.42o 9.53o 

5 3 3 4 5 6 36.86o 28.07o 22.62o 18.92o 

6 4 3 4 5 6 53.13o 41.11o 33.4o 28.07o 

  

Fig.(5) Presented the velocity component at x-direction for path (1). The velocity decreases 

with increase (X/L) because of increased in divergent angle for the same angle and the velocity 

increases with decreased angle for the same (X/L). 

 Fig.(6) Shows the velocity component at y-direction along the diffuser for different angles 

for path(1) and area ratio (1.4). The velocity decreases along the diffuser for the same angle due to 

increase in divergent duct. And the velocity increases with decreased the diffuser angle for the 

distance between (0.1-0.5) and then no effect with increase or decrease angle. 

 

 Fig. (7) Presents the pressure recovery coefficient, distribution along the diffuser for path 

(1). The pressure recovery coefficient increases with the increased distance for the same angle due 

to the increase in the static pressure because of the decreasing velocity (diffusion process). Pressure 

recovery coefficient decreases with the increased angle due to the increased absolute velocity and 

the decreased static pressure and it began from negative value near the wall due to high velocity at 
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inlet. 

Fig.(8) Shows the velocity component at x-direction with area ratio, for path (1) and 

different (L/W1) The velocity component decreases with increase area ratio for the same (X/L) due 

to increase in the divergent angle . And the velocity component increase with increase (X/L) for the 

same area ratio specially when the area ratio above (2). 

Fig. (9) Presented the velocity component at y-direction with variable area ratio for path (1) 

and different (X/L). The velocity component increased slowly with increased area ratio due to 

increased in divergent angle for the same (X/L). And velocity component decreased with increased 

(X/L). 

Fig.(10) Shows the pressure recovery factor with different area ratio. The pressure recovery 

factor increased with increased area ratio at the same (X/L) due to increased in divergent angle. And 

it increased with increased (X/L) at the same area ratio due to increased in angle.  

Fig. (11) Shows area ratio with divergent angle (2) for Path (1) and different (X/L). The 

area ratio increased with increased divergent angle for the same (X/L). And area ratio increased 

with increased (X/L). 

Fig. (12) Present velocity component at x-direction with area ratio for three paths (1, 2 and 

3) and for (X/L =3). The velocity component decreased with increased area ratio for the same path. 

And the velocity component decreased with increased distance from the wall at the same area ratio. 

Fig. (13) Fig. (12) Present velocity component at y-direction with area ratio for three paths 

(1, 2 and 3) and for (X/L =3). The velocity component increased with increased area ratio for the 

paths (1and 2) and then decreased due to increased in divergent angle. And the velocity component 

approaches to constant and equal zero for path (3) due to increased distance from the wall and 

increased velocity component at x-direction.    

A compression between the numerical results from the present mathematical model with 

other workers analyses was made. Fig. (14), Fig. (15) and Fig. (16) Shows a compression between 

the results obtained with that published by Riyadh [1].  

Fig. (14) Shows the velocity component ratio at y-direction for diffuser for AR=2, L/W1=6 

and path (1). Noted that it have different between the present model (unsteady) and Riyadh [1] 

(steady) due to effect of an unsteady term (
t


).  

Fig. (15) Present the effect of pressure recovery coefficient across the diffuser for AR=2, 

L/W1=6 and path (1). It has been found the effect of pressure recovery in steady state is smaller 

than unsteady state. 

Fig. (16) Shows the velocity ratio for AR=2, L/W1=6 and path (1). The velocity ratio 

decreased with increased distance due to increased in divergent angle but when unsteady state, the 

velocity decreased less than steady state due to effect the term of unsteady. 
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7. Conclusion 

 

This paper has dealt with a finite element method to analyze unsteady flows of viscous fluid in 

two dimension of diffuser. Discretization procedure is based on Galerkin approach.. The following 

conclusion can be made: - 

1. From studying the results of analysis of flow throw the diffuser for several models, the geometry 

data for optimum design found are: 

AR=2,     L/W1  =6    and    = 9.53
o
  

2. This model gives a pressure recovery coefficient (CP) equal to (0.75) and low velocity 

component (V) with respect with other models and lows ratio OF (L/W1) with other models. This 

agrees well with that published by reference [1, 2, and 3]. 

4- Pressure recovery coefficient increase with increase the angle of divergence of diffuser wall and 

increase in static pressure with decreased in average velocity. 

 

 

 

Nomenclature 

 

C1, C2, Cµ:- Constant of turbulence.   ℓ:-Laminar viscosity. (kg/m.s) 

K:-kinetic energy of turbulence.   t:- Turbulent  viscosity. (kg/m.s) 

ℓ:-Length scale of turbulence. (m)   :-Dissipation rate of turbulence. 

P1:-Inlet static pressure. (N/m
2
)   eff:-Effective viscosity. (kg/m.s) 

P2:-Exit static pressure. (N/m
2
)             k:- Turbulence Prandtle number for k-equation 

CP:-Pressure recovery coefficient.   : Turbulence Prandtle number for -equation 

L:-Length of diffuser.     R:-Radial component.     

:-Kinematics viscosity. (m
2
/s)   V1=Absolute velocity 

u:- velocity component. (m/s)    Cd=coefficient equal to unity without losses. 

t:-Time (sec.)      X:-axial distance. (m) 

:-Divergent angle.(degree)    :-Density. (Kg/m
3
) 

:-Area of element. (m
2
)    :-Shear stress. (N/m

2
) 

,,,:-The global node number.   i, j:-Tensor notation subscripts. 

:-Stress tensor.     AR: area ratio.     

W1 and W2:-Inlet exit diffuser width between diverging wall. (m) 

b:-distance between parallel walls of a diffuser. (m)       

α4SS:- Diffuser vane suction side angle (Fig. 1) 

r2, r4:- Radius of impeller.  
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